POST ELEMENT STYLE MASONRY
Date/time
Synchronous interactive sessions: December 11-15, 2023 (the course starts at 09:00 on December 11th and ends at 16:00 on December 13th).
The course also contains a self-paced online learning phase that the course participants need to complete before being accepted to the synchronous sessions. The web-based platform used for the entire course opens on November 10th, 2023, at the latest, which is also the date when the participants can start the self-paced online learning phase.
Location
Chalmers University of Technology, Gothenburg, Sweden. The course can also be followed entirely on-line.
Registration
Register by October 1st, 2023 at https://forms.office.com/e/zVd0xXB9zi
Fee
The course is free of charge. Participants have nevertheless to cover their own expenses (travel, food, and accommodation) in case of onsite participation to the synchronous interactive sessions.
In case of onsite attendance, participants can also apply for financial support through the ENEN2plus mobility funds specifically allocated to this course.
ENEN2plus applications should be separately filed on the ENEN2plus mobility portal at https://mobility.enen.eu/prog/lst/ in the category “Individuals applying to group events” (then select the event “Course on Deterministic modelling of nuclear system multi-physics 2023” when asked to select an event in the eligibility form).
Contact
Prof. Christophe Demazière Chalmers University of Technology Department of Physics Division of Subatomic, High Energy and Plasma Physics demaz@chalmers.se
Course theme
The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes, either commercially available or developed in-house. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics.
Even though the sophistication of the codes allows for modelling intricate reactor phenomena, the complexity of the tools makes their use difficult. In addition, without proper guidance, users might apply the codes in some erroneous fashion, when for instance the underlying assumptions and conditions in a given numerical method are not fulfilled.
This course aims at presenting the main algorithms used in such codes. The course is not about explaining how to use such software, but rather to understand the underlying methods, together with their assumptions and limitations. After completing the course, the attendees will be able to use such codes with confidence.
The unique character of the course resides in tackling neutron transport, fluid dynamics, and heat transfer within the same course. The main techniques are presented in the course in a generic manner (i.e., not specific to any code system) and for practical reactor calculations performed by, e.g., utilities for core follow and safety analyses. Concerning neutron transport, the course thus focuses exclusively on deterministic modelling.
Learning objective
After completion of the course, the course attendees should be able to:
• Know the governing equations describing neutron transport, flow transport, and heat transfer in nuclear reactors.
• Know the modelling strategies used for neutron transport, flow transport, heat transfer in nuclear reactors, and for their coupling.
• Understand the limitations of the different modelling strategies.
• Implement some of the modelling strategies in modelling environments.
Target audience
• MSc students, PhD students and Post-Doc students having some background knowledge in nuclear engineering.
• Nuclear engineers.
• Reactor physicists.
• Nuclear safety analysts.
• Research scientists in the above fields.
Prerequisites
Although previous knowledge in reactor physics, thermal-hydraulics or nuclear engineering is definitely advantageous, all equations are derived from first principles and should allow the students not familiar with reactor modelling to comprehend all concepts thoroughly.
Some basic knowledge in programming is of definite advantage for solving different programming tasks. A web-based platform based on Matlab (called Matlab Grader) will be made accessible to the course participants. Basic programming skills in interpreted languages like Matlab or similar are beneficial. Participants not familiar with Matlab will be provided with extra resources.
Teaching approach
The course can be followed on-site in Chalmers or off-site (i.e., remotely).
The course follows a “flipped classroom” set-up in a hybrid (i.e., on-site/off-site) environment. Students learn asynchronously from a book, short video lectures and online quizzes prior to attending synchronous sessions (either in the classroom for the on-site students or remotely for the off-site students). Such sessions are held in an interactive teaching room in Chalmers. The room allows mixing on-site students with remote attendees while preserving full interaction possibilities between both audiences. Because the students learn at their own pace during the asynchronous sessions, they attend the synchronous sessions better prepared. As a result, these sessions can focus on more active forms of learning that effectively engage students, promote higher-order thinking, clarify difficult concepts, and provide more personalized support.
Course format
The course consists of:
• An asynchronous self-paced online learning phase, comprising the following resources:
o The book titled “Modelling of nuclear reactor multi-physics − From local balance equations to macroscopic models in neutronics and thermal-hydraulics”, by C. Demazière, ISBN-978-0-12-815069-6, Academic Press/Elsevier (2020) https://www.elsevier.com/books/isbn/9780128150696 The course participants will get their private copy of the book.
o Pre-recorded lectures or webcasts are available to students for on-demand viewing.
o Online quizzes that focus on conceptual understanding.
• Synchronous hybrid interactive sessions (online or onsite), comprising the following resources:
o Wrap-up sessions designed to summarize the key concepts presented in the book/webcasts and to address student needs.
o Discussions based on interactive quizzes.
o Programming sessions, during which the attendees will have to solve, under the teacher’s supervision and guidance, some programming assignments in Matlab Grader.
For the off-site attendees, the interactive sessions are live broadcasted on the web. They will also be recorded and made available on the web. For the remote attendees, it is nevertheless strongly recommended to attend the interactive sessions when they take place to fully benefit from the teacher’s support.
The preparatory (i.e., asynchronous) work represents ca. 100 hours of self-studies. The synchronous interactive sessions represent ca. 60 hours.
Course certificate and course credits
A course certificate will be issued to the students who obtain at least 50 points (out of 100 max points). The total number of points is estimated as follows:
• The points on the asynchronous quizzes will account for 25% of the total number of points.
• The active participation to the synchronous sessions will account for 75% of the total number of points.
The certificate will briefly describe the course contents, the number of hours the different course elements represent and the number of equivalent ECTS credits (European Credit Transfer and Accumulation System). The course is worth 6 ECTS.
Technical course contents
The curriculum for the course follows the chapters in the book “Modelling of Nuclear Reactor Multi-physics – From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics” (ISBN 978-0-12-815069-6) and is thus organized in seven chapters.
Chapter 1 – Introduction
In the introductory chapter, the main topics addressed in the book are first discussed, together with the objectives the course attempts to tackle. Areas not covered in the course are also described. The structure of the course is thereafter presented. Both the technical contents as well as the followed pedagogical approach are dealt with. The notations and conventions used throughout the course are then highlighted. Finally, some mathematical concepts and theorems of importance for the following chapters are presented.
Chapter 2 – Transport phenomena in nuclear reactors
In this chapter, the governing equations for neutron transport, fluid transport, and heat transfer are derived, so that students not familiar with any of these fields can comprehend the course without difficulty. The peculiarities of nuclear reactor systems, i.e., their multi-physic and multi-scale aspects, are dealt with. An overview of the modelling strategies is thereafter given, with particular emphasis on deterministic methods, which represents the focus area of the course.
Chapter 3 – Neutron transport calculations at the cell and assembly levels
In this chapter, the computational methods for neutron transport at both the pin cell and fuel assembly levels are presented. The chapter is aimed at following the solution procedure in fuel pin/lattice codes as much as possible. This includes resonance calculations of the cross-sections, the determination of the micro-region micro-fluxes, and of the macro-region macro-fluxes, and finally spectrum correction. The chapter ends with the preparation of the macroscopic cross-sections for sub-sequent core calculations, where the effect of burnup is also detailed.
Chapter 4 – Neutron transport calculations at the core level
In this chapter, the computational methods in use for core calculations are presented. In the first part of this chapter, the treatment of the angular dependence of the neutron flux is described. In the second part, the treatment of the spatial dependence of the neutron flux is outlined. Thereafter, the solution procedure for estimating the core-wise position- (and possibly direction-) dependent multigroup neutron flux is described. Finally, the methodology used for determining the core-wise space- and time-dependent neutron flux in case of transient calculations is derived.
Chapter 5 – One-/two-phase flow transport and heat transfer
This chapter focuses on the computational methods used for one-/two-phase flow transport and heat transfer. From the local governing equations of fluid flow and heat transfer, macroscopic governing equations are derived, and the underlying assumptions clearly emphasized. The different flow models commonly used in nuclear engineering are introduced, models having various levels of sophistication: the two-fluid model, the mixture models with thermal equilibrium and specified drift, and the Homogeneous Equilibrium Model. The temporal and spatial discretization of the flow and heat transfer models are given special attention, with emphasis on their stability, consistence, and convergence.
Chapter 6 – Neutronic/thermal-hydraulic coupling
This chapter tackles solving the coupling between neutronics and thermal-hydraulics at the core level. Various aspects of multi-physics coupling are highlighted: segregated versus monolithic approaches, coupling terms and non-linearities, information transfer, preparation of the macroscopic material data (cross-sections, diffusion coefficients, and discontinuity factors) as functions of the thermal-hydraulic variables, spatial coupling. The numerical techniques that can be used to solve multi-physics temporal coupling either in a segregated or in a monolithic manner are also discussed in detail.
Chapter 7 – Conclusions
The last chapter summarizes in, a nutshell, the macroscopic modelling techniques and presents a quick overview of the current efforts in high-fidelity reactor modelling.
HERE is the leaflet, available for download
There are two 6-months long opportunities at FZJ, in Germany
Coupled containmentFOAM-Modelica modeling of the passive safety systems of small modular reactors
Schedule (6 months):
2 weeks: Literature review on coupling strategies or modeling of pressure decay systems.
6 weeks: Familiarization OpenModelica and containmentFOAM
8 weeks: Implementation of new developments for the Modelica models (coupling scheme and/or heat and mass transfer phenomenology)
6 weeks: Execution of coupled simulations, test of the robustness of the coupling and implementation of improvements if necessary. Application-oriented validation.
4 weeks: Preparation of the final documentation.
Schedule (6 months):
2 weeks: literature review on external cooling of submerged containments.
4 weeks: familiarization OpenFOAM / containmentFOAM
2 weeks: evaluation of optimal modeling approach to simulate the external cooling with containmentFOAM
6 weeks: development of model input and simulation of available experiments (boundary condition as a heat source for the external pool)
8 weeks: set-up coupled case with the current version of containmentFoam to represent the heat source to the external pool
4 weeks: Preparation of the final documentation
For both positions, the contact person is
Carlos Vázquez-Rodríguez,
Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH, c.vazquez-rodrigez@fz-juelich.de, 02461/618057
The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) announces the launch of an e-learning course on INPRO Methods and Tools for Modelling and Analysis of Nuclear Energy Systems.
INPRO supports Member States in their long-term planning for sustainable nuclear energy. INPRO provides support related to nuclear energy system scenario modelling, analysis, and sustainability assessment.
The e-learning course will provide Member States with training on INPRO methods and tools for modelling and analysis of nuclear energy systems. This course will support strengthening national capacity in strategic planning for sustainable nuclear energy. The course materials are suitable for familiarisation with INPRO methods and tools and for conducting studies within INPRO collaborative projects.
The course is self-paced, and participants can access the course materials at any time. The course is for professionals involved in nuclear energy planning, policy-making, and analysis, and for students pursuing a career in the field of nuclear energy.
We invite you to take advantage of this opportunity to enhance your knowledge of INPRO methods and tools for modelling and analysis of nuclear energy systems.
Course enrolment and information is in the IAEA Learning Management System: https://elearning.iaea.org/m2/course/view.php?id=1341
POST ELEMENT STYLE MASK ON IMAGE
Date/time
Synchronous interactive sessions: December 11-15, 2023 (the course starts at 09:00 on December 11th and ends at 16:00 on December 13th).
The course also contains a self-paced online learning phase that the course participants need to complete before being accepted to the synchronous sessions. The web-based platform used for the entire course opens on November 10th, 2023, at the latest, which is also the date when the participants can start the self-paced online learning phase.
Location
Chalmers University of Technology, Gothenburg, Sweden. The course can also be followed entirely on-line.
Registration
Register by October 1st, 2023 at https://forms.office.com/e/zVd0xXB9zi
Fee
The course is free of charge. Participants have nevertheless to cover their own expenses (travel, food, and accommodation) in case of onsite participation to the synchronous interactive sessions.
In case of onsite attendance, participants can also apply for financial support through the ENEN2plus mobility funds specifically allocated to this course.
ENEN2plus applications should be separately filed on the ENEN2plus mobility portal at https://mobility.enen.eu/prog/lst/ in the category “Individuals applying to group events” (then select the event “Course on Deterministic modelling of nuclear system multi-physics 2023” when asked to select an event in the eligibility form).
Contact
Prof. Christophe Demazière Chalmers University of Technology Department of Physics Division of Subatomic, High Energy and Plasma Physics demaz@chalmers.se
Course theme
The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes, either commercially available or developed in-house. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics.
Even though the sophistication of the codes allows for modelling intricate reactor phenomena, the complexity of the tools makes their use difficult. In addition, without proper guidance, users might apply the codes in some erroneous fashion, when for instance the underlying assumptions and conditions in a given numerical method are not fulfilled.
This course aims at presenting the main algorithms used in such codes. The course is not about explaining how to use such software, but rather to understand the underlying methods, together with their assumptions and limitations. After completing the course, the attendees will be able to use such codes with confidence.
The unique character of the course resides in tackling neutron transport, fluid dynamics, and heat transfer within the same course. The main techniques are presented in the course in a generic manner (i.e., not specific to any code system) and for practical reactor calculations performed by, e.g., utilities for core follow and safety analyses. Concerning neutron transport, the course thus focuses exclusively on deterministic modelling.
Learning objective
After completion of the course, the course attendees should be able to:
• Know the governing equations describing neutron transport, flow transport, and heat transfer in nuclear reactors.
• Know the modelling strategies used for neutron transport, flow transport, heat transfer in nuclear reactors, and for their coupling.
• Understand the limitations of the different modelling strategies.
• Implement some of the modelling strategies in modelling environments.
Target audience
• MSc students, PhD students and Post-Doc students having some background knowledge in nuclear engineering.
• Nuclear engineers.
• Reactor physicists.
• Nuclear safety analysts.
• Research scientists in the above fields.
Prerequisites
Although previous knowledge in reactor physics, thermal-hydraulics or nuclear engineering is definitely advantageous, all equations are derived from first principles and should allow the students not familiar with reactor modelling to comprehend all concepts thoroughly.
Some basic knowledge in programming is of definite advantage for solving different programming tasks. A web-based platform based on Matlab (called Matlab Grader) will be made accessible to the course participants. Basic programming skills in interpreted languages like Matlab or similar are beneficial. Participants not familiar with Matlab will be provided with extra resources.
Teaching approach
The course can be followed on-site in Chalmers or off-site (i.e., remotely).
The course follows a “flipped classroom” set-up in a hybrid (i.e., on-site/off-site) environment. Students learn asynchronously from a book, short video lectures and online quizzes prior to attending synchronous sessions (either in the classroom for the on-site students or remotely for the off-site students). Such sessions are held in an interactive teaching room in Chalmers. The room allows mixing on-site students with remote attendees while preserving full interaction possibilities between both audiences. Because the students learn at their own pace during the asynchronous sessions, they attend the synchronous sessions better prepared. As a result, these sessions can focus on more active forms of learning that effectively engage students, promote higher-order thinking, clarify difficult concepts, and provide more personalized support.
Course format
The course consists of:
• An asynchronous self-paced online learning phase, comprising the following resources:
o The book titled “Modelling of nuclear reactor multi-physics − From local balance equations to macroscopic models in neutronics and thermal-hydraulics”, by C. Demazière, ISBN-978-0-12-815069-6, Academic Press/Elsevier (2020) https://www.elsevier.com/books/isbn/9780128150696 The course participants will get their private copy of the book.
o Pre-recorded lectures or webcasts are available to students for on-demand viewing.
o Online quizzes that focus on conceptual understanding.
• Synchronous hybrid interactive sessions (online or onsite), comprising the following resources:
o Wrap-up sessions designed to summarize the key concepts presented in the book/webcasts and to address student needs.
o Discussions based on interactive quizzes.
o Programming sessions, during which the attendees will have to solve, under the teacher’s supervision and guidance, some programming assignments in Matlab Grader.
For the off-site attendees, the interactive sessions are live broadcasted on the web. They will also be recorded and made available on the web. For the remote attendees, it is nevertheless strongly recommended to attend the interactive sessions when they take place to fully benefit from the teacher’s support.
The preparatory (i.e., asynchronous) work represents ca. 100 hours of self-studies. The synchronous interactive sessions represent ca. 60 hours.
Course certificate and course credits
A course certificate will be issued to the students who obtain at least 50 points (out of 100 max points). The total number of points is estimated as follows:
• The points on the asynchronous quizzes will account for 25% of the total number of points.
• The active participation to the synchronous sessions will account for 75% of the total number of points.
The certificate will briefly describe the course contents, the number of hours the different course elements represent and the number of equivalent ECTS credits (European Credit Transfer and Accumulation System). The course is worth 6 ECTS.
Technical course contents
The curriculum for the course follows the chapters in the book “Modelling of Nuclear Reactor Multi-physics – From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics” (ISBN 978-0-12-815069-6) and is thus organized in seven chapters.
Chapter 1 – Introduction
In the introductory chapter, the main topics addressed in the book are first discussed, together with the objectives the course attempts to tackle. Areas not covered in the course are also described. The structure of the course is thereafter presented. Both the technical contents as well as the followed pedagogical approach are dealt with. The notations and conventions used throughout the course are then highlighted. Finally, some mathematical concepts and theorems of importance for the following chapters are presented.
Chapter 2 – Transport phenomena in nuclear reactors
In this chapter, the governing equations for neutron transport, fluid transport, and heat transfer are derived, so that students not familiar with any of these fields can comprehend the course without difficulty. The peculiarities of nuclear reactor systems, i.e., their multi-physic and multi-scale aspects, are dealt with. An overview of the modelling strategies is thereafter given, with particular emphasis on deterministic methods, which represents the focus area of the course.
Chapter 3 – Neutron transport calculations at the cell and assembly levels
In this chapter, the computational methods for neutron transport at both the pin cell and fuel assembly levels are presented. The chapter is aimed at following the solution procedure in fuel pin/lattice codes as much as possible. This includes resonance calculations of the cross-sections, the determination of the micro-region micro-fluxes, and of the macro-region macro-fluxes, and finally spectrum correction. The chapter ends with the preparation of the macroscopic cross-sections for sub-sequent core calculations, where the effect of burnup is also detailed.
Chapter 4 – Neutron transport calculations at the core level
In this chapter, the computational methods in use for core calculations are presented. In the first part of this chapter, the treatment of the angular dependence of the neutron flux is described. In the second part, the treatment of the spatial dependence of the neutron flux is outlined. Thereafter, the solution procedure for estimating the core-wise position- (and possibly direction-) dependent multigroup neutron flux is described. Finally, the methodology used for determining the core-wise space- and time-dependent neutron flux in case of transient calculations is derived.
Chapter 5 – One-/two-phase flow transport and heat transfer
This chapter focuses on the computational methods used for one-/two-phase flow transport and heat transfer. From the local governing equations of fluid flow and heat transfer, macroscopic governing equations are derived, and the underlying assumptions clearly emphasized. The different flow models commonly used in nuclear engineering are introduced, models having various levels of sophistication: the two-fluid model, the mixture models with thermal equilibrium and specified drift, and the Homogeneous Equilibrium Model. The temporal and spatial discretization of the flow and heat transfer models are given special attention, with emphasis on their stability, consistence, and convergence.
Chapter 6 – Neutronic/thermal-hydraulic coupling
This chapter tackles solving the coupling between neutronics and thermal-hydraulics at the core level. Various aspects of multi-physics coupling are highlighted: segregated versus monolithic approaches, coupling terms and non-linearities, information transfer, preparation of the macroscopic material data (cross-sections, diffusion coefficients, and discontinuity factors) as functions of the thermal-hydraulic variables, spatial coupling. The numerical techniques that can be used to solve multi-physics temporal coupling either in a segregated or in a monolithic manner are also discussed in detail.
Chapter 7 – Conclusions
The last chapter summarizes in, a nutshell, the macroscopic modelling techniques and presents a quick overview of the current efforts in high-fidelity reactor modelling.
HERE is the leaflet, available for download
There are two 6-months long opportunities at FZJ, in Germany
Coupled containmentFOAM-Modelica modeling of the passive safety systems of small modular reactors
Schedule (6 months):
2 weeks: Literature review on coupling strategies or modeling of pressure decay systems.
6 weeks: Familiarization OpenModelica and containmentFOAM
8 weeks: Implementation of new developments for the Modelica models (coupling scheme and/or heat and mass transfer phenomenology)
6 weeks: Execution of coupled simulations, test of the robustness of the coupling and implementation of improvements if necessary. Application-oriented validation.
4 weeks: Preparation of the final documentation.
Schedule (6 months):
2 weeks: literature review on external cooling of submerged containments.
4 weeks: familiarization OpenFOAM / containmentFOAM
2 weeks: evaluation of optimal modeling approach to simulate the external cooling with containmentFOAM
6 weeks: development of model input and simulation of available experiments (boundary condition as a heat source for the external pool)
8 weeks: set-up coupled case with the current version of containmentFoam to represent the heat source to the external pool
4 weeks: Preparation of the final documentation
For both positions, the contact person is
Carlos Vázquez-Rodríguez,
Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH, c.vazquez-rodrigez@fz-juelich.de, 02461/618057
The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) announces the launch of an e-learning course on INPRO Methods and Tools for Modelling and Analysis of Nuclear Energy Systems.
INPRO supports Member States in their long-term planning for sustainable nuclear energy. INPRO provides support related to nuclear energy system scenario modelling, analysis, and sustainability assessment.
The e-learning course will provide Member States with training on INPRO methods and tools for modelling and analysis of nuclear energy systems. This course will support strengthening national capacity in strategic planning for sustainable nuclear energy. The course materials are suitable for familiarisation with INPRO methods and tools and for conducting studies within INPRO collaborative projects.
The course is self-paced, and participants can access the course materials at any time. The course is for professionals involved in nuclear energy planning, policy-making, and analysis, and for students pursuing a career in the field of nuclear energy.
We invite you to take advantage of this opportunity to enhance your knowledge of INPRO methods and tools for modelling and analysis of nuclear energy systems.
Course enrolment and information is in the IAEA Learning Management System: https://elearning.iaea.org/m2/course/view.php?id=1341
CAROUSEL OF POSTS
Course “Deterministic modelling of nuclear reactor multi-physics”
Date/time
Synchronous interactive sessions: December 11-15, 2023 (the course starts at 09:00 on December 11th and ends at 16:00 on December 13th).
The course also contains a self-paced online learning phase that the course participants need to complete before being accepted to the synchronous sessions. The web-based platform used for the entire course opens on November 10th, 2023, at the latest, which is also the date when the participants can start the self-paced online learning phase.
Location
Chalmers University of Technology, Gothenburg, Sweden. The course can also be followed entirely on-line.
Registration
Register by October 1st, 2023 at https://forms.office.com/e/zVd0xXB9zi
Fee
The course is free of charge. Participants have nevertheless to cover their own expenses (travel, food, and accommodation) in case of onsite participation to the synchronous interactive sessions.
In case of onsite attendance, participants can also apply for financial support through the ENEN2plus mobility funds specifically allocated to this course.
ENEN2plus applications should be separately filed on the ENEN2plus mobility portal at https://mobility.enen.eu/prog/lst/ in the category “Individuals applying to group events” (then select the event “Course on Deterministic modelling of nuclear system multi-physics 2023” when asked to select an event in the eligibility form).
Contact
Prof. Christophe Demazière Chalmers University of Technology Department of Physics Division of Subatomic, High Energy and Plasma Physics demaz@chalmers.se
Course theme
The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes, either commercially available or developed in-house. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics.
Even though the sophistication of the codes allows for modelling intricate reactor phenomena, the complexity of the tools makes their use difficult. In addition, without proper guidance, users might apply the codes in some erroneous fashion, when for instance the underlying assumptions and conditions in a given numerical method are not fulfilled.
This course aims at presenting the main algorithms used in such codes. The course is not about explaining how to use such software, but rather to understand the underlying methods, together with their assumptions and limitations. After completing the course, the attendees will be able to use such codes with confidence.
The unique character of the course resides in tackling neutron transport, fluid dynamics, and heat transfer within the same course. The main techniques are presented in the course in a generic manner (i.e., not specific to any code system) and for practical reactor calculations performed by, e.g., utilities for core follow and safety analyses. Concerning neutron transport, the course thus focuses exclusively on deterministic modelling.
Learning objective
After completion of the course, the course attendees should be able to:
• Know the governing equations describing neutron transport, flow transport, and heat transfer in nuclear reactors.
• Know the modelling strategies used for neutron transport, flow transport, heat transfer in nuclear reactors, and for their coupling.
• Understand the limitations of the different modelling strategies.
• Implement some of the modelling strategies in modelling environments.
Target audience
• MSc students, PhD students and Post-Doc students having some background knowledge in nuclear engineering.
• Nuclear engineers.
• Reactor physicists.
• Nuclear safety analysts.
• Research scientists in the above fields.
Prerequisites
Although previous knowledge in reactor physics, thermal-hydraulics or nuclear engineering is definitely advantageous, all equations are derived from first principles and should allow the students not familiar with reactor modelling to comprehend all concepts thoroughly.
Some basic knowledge in programming is of definite advantage for solving different programming tasks. A web-based platform based on Matlab (called Matlab Grader) will be made accessible to the course participants. Basic programming skills in interpreted languages like Matlab or similar are beneficial. Participants not familiar with Matlab will be provided with extra resources.
Teaching approach
The course can be followed on-site in Chalmers or off-site (i.e., remotely).
The course follows a “flipped classroom” set-up in a hybrid (i.e., on-site/off-site) environment. Students learn asynchronously from a book, short video lectures and online quizzes prior to attending synchronous sessions (either in the classroom for the on-site students or remotely for the off-site students). Such sessions are held in an interactive teaching room in Chalmers. The room allows mixing on-site students with remote attendees while preserving full interaction possibilities between both audiences. Because the students learn at their own pace during the asynchronous sessions, they attend the synchronous sessions better prepared. As a result, these sessions can focus on more active forms of learning that effectively engage students, promote higher-order thinking, clarify difficult concepts, and provide more personalized support.
Course format
The course consists of:
• An asynchronous self-paced online learning phase, comprising the following resources:
o The book titled “Modelling of nuclear reactor multi-physics − From local balance equations to macroscopic models in neutronics and thermal-hydraulics”, by C. Demazière, ISBN-978-0-12-815069-6, Academic Press/Elsevier (2020) https://www.elsevier.com/books/isbn/9780128150696 The course participants will get their private copy of the book.
o Pre-recorded lectures or webcasts are available to students for on-demand viewing.
o Online quizzes that focus on conceptual understanding.
• Synchronous hybrid interactive sessions (online or onsite), comprising the following resources:
o Wrap-up sessions designed to summarize the key concepts presented in the book/webcasts and to address student needs.
o Discussions based on interactive quizzes.
o Programming sessions, during which the attendees will have to solve, under the teacher’s supervision and guidance, some programming assignments in Matlab Grader.
For the off-site attendees, the interactive sessions are live broadcasted on the web. They will also be recorded and made available on the web. For the remote attendees, it is nevertheless strongly recommended to attend the interactive sessions when they take place to fully benefit from the teacher’s support.
The preparatory (i.e., asynchronous) work represents ca. 100 hours of self-studies. The synchronous interactive sessions represent ca. 60 hours.
Course certificate and course credits
A course certificate will be issued to the students who obtain at least 50 points (out of 100 max points). The total number of points is estimated as follows:
• The points on the asynchronous quizzes will account for 25% of the total number of points.
• The active participation to the synchronous sessions will account for 75% of the total number of points.
The certificate will briefly describe the course contents, the number of hours the different course elements represent and the number of equivalent ECTS credits (European Credit Transfer and Accumulation System). The course is worth 6 ECTS.
Technical course contents
The curriculum for the course follows the chapters in the book “Modelling of Nuclear Reactor Multi-physics – From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics” (ISBN 978-0-12-815069-6) and is thus organized in seven chapters.
Chapter 1 – Introduction
In the introductory chapter, the main topics addressed in the book are first discussed, together with the objectives the course attempts to tackle. Areas not covered in the course are also described. The structure of the course is thereafter presented. Both the technical contents as well as the followed pedagogical approach are dealt with. The notations and conventions used throughout the course are then highlighted. Finally, some mathematical concepts and theorems of importance for the following chapters are presented.
Chapter 2 – Transport phenomena in nuclear reactors
In this chapter, the governing equations for neutron transport, fluid transport, and heat transfer are derived, so that students not familiar with any of these fields can comprehend the course without difficulty. The peculiarities of nuclear reactor systems, i.e., their multi-physic and multi-scale aspects, are dealt with. An overview of the modelling strategies is thereafter given, with particular emphasis on deterministic methods, which represents the focus area of the course.
Chapter 3 – Neutron transport calculations at the cell and assembly levels
In this chapter, the computational methods for neutron transport at both the pin cell and fuel assembly levels are presented. The chapter is aimed at following the solution procedure in fuel pin/lattice codes as much as possible. This includes resonance calculations of the cross-sections, the determination of the micro-region micro-fluxes, and of the macro-region macro-fluxes, and finally spectrum correction. The chapter ends with the preparation of the macroscopic cross-sections for sub-sequent core calculations, where the effect of burnup is also detailed.
Chapter 4 – Neutron transport calculations at the core level
In this chapter, the computational methods in use for core calculations are presented. In the first part of this chapter, the treatment of the angular dependence of the neutron flux is described. In the second part, the treatment of the spatial dependence of the neutron flux is outlined. Thereafter, the solution procedure for estimating the core-wise position- (and possibly direction-) dependent multigroup neutron flux is described. Finally, the methodology used for determining the core-wise space- and time-dependent neutron flux in case of transient calculations is derived.
Chapter 5 – One-/two-phase flow transport and heat transfer
This chapter focuses on the computational methods used for one-/two-phase flow transport and heat transfer. From the local governing equations of fluid flow and heat transfer, macroscopic governing equations are derived, and the underlying assumptions clearly emphasized. The different flow models commonly used in nuclear engineering are introduced, models having various levels of sophistication: the two-fluid model, the mixture models with thermal equilibrium and specified drift, and the Homogeneous Equilibrium Model. The temporal and spatial discretization of the flow and heat transfer models are given special attention, with emphasis on their stability, consistence, and convergence.
Chapter 6 – Neutronic/thermal-hydraulic coupling
This chapter tackles solving the coupling between neutronics and thermal-hydraulics at the core level. Various aspects of multi-physics coupling are highlighted: segregated versus monolithic approaches, coupling terms and non-linearities, information transfer, preparation of the macroscopic material data (cross-sections, diffusion coefficients, and discontinuity factors) as functions of the thermal-hydraulic variables, spatial coupling. The numerical techniques that can be used to solve multi-physics temporal coupling either in a segregated or in a monolithic manner are also discussed in detail.
Chapter 7 – Conclusions
The last chapter summarizes in, a nutshell, the macroscopic modelling techniques and presents a quick overview of the current efforts in high-fidelity reactor modelling.
HERE is the leaflet, available for download
OPPORTUNITIES at Forschungzentrum Juelich
There are two 6-months long opportunities at FZJ, in Germany
Coupled containmentFOAM-Modelica modeling of the passive safety systems of small modular reactors
Schedule (6 months):
2 weeks: Literature review on coupling strategies or modeling of pressure decay systems.
6 weeks: Familiarization OpenModelica and containmentFOAM
8 weeks: Implementation of new developments for the Modelica models (coupling scheme and/or heat and mass transfer phenomenology)
6 weeks: Execution of coupled simulations, test of the robustness of the coupling and implementation of improvements if necessary. Application-oriented validation.
4 weeks: Preparation of the final documentation.
Schedule (6 months):
2 weeks: literature review on external cooling of submerged containments.
4 weeks: familiarization OpenFOAM / containmentFOAM
2 weeks: evaluation of optimal modeling approach to simulate the external cooling with containmentFOAM
6 weeks: development of model input and simulation of available experiments (boundary condition as a heat source for the external pool)
8 weeks: set-up coupled case with the current version of containmentFoam to represent the heat source to the external pool
4 weeks: Preparation of the final documentation
For both positions, the contact person is
Carlos Vázquez-Rodríguez,
Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH, c.vazquez-rodrigez@fz-juelich.de, 02461/618057
Launching of e-learning course on INPRO Methods and Tools for Modelling and Analysis of Nuclear Energy Systems
The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) announces the launch of an e-learning course on INPRO Methods and Tools for Modelling and Analysis of Nuclear Energy Systems.
INPRO supports Member States in their long-term planning for sustainable nuclear energy. INPRO provides support related to nuclear energy system scenario modelling, analysis, and sustainability assessment.
The e-learning course will provide Member States with training on INPRO methods and tools for modelling and analysis of nuclear energy systems. This course will support strengthening national capacity in strategic planning for sustainable nuclear energy. The course materials are suitable for familiarisation with INPRO methods and tools and for conducting studies within INPRO collaborative projects.
The course is self-paced, and participants can access the course materials at any time. The course is for professionals involved in nuclear energy planning, policy-making, and analysis, and for students pursuing a career in the field of nuclear energy.
We invite you to take advantage of this opportunity to enhance your knowledge of INPRO methods and tools for modelling and analysis of nuclear energy systems.
Course enrolment and information is in the IAEA Learning Management System: https://elearning.iaea.org/m2/course/view.php?id=1341
Transnational access to analytical research infrastructures via ReMade@ARI – call info
Leaflet available for download: HERE
Job opportunities at CERN
CERN is hiring: “Project Controller” & “RP Technician”
– « Project Controller » (deadline 16.08.23)
– « Radiation Protection Technician » (deadline 27.08.23)
The application process takes place entirely on-line. (Detailed instructions will be found in the portal)
Job offer at CIEMAT
CIEMAT has opened a position (3 years) for graduate/young PhDs in the framework of our R&D associated to transmutation and linked with our joint activities with Spanish National Company for Waste Management (ENRESA).
The work will consist of the simulation of nuclear reactors (mainly Generation IV reactors, small modular reactors – SMR and subcritical systems) using the Monte Carlo technique, and the simulation of experiments and neutron detectors. Besides, as usual, the propagation of the uncertainty to reactivity safety parameters will be analysed.
In our case, the main contributor is nuclear data. With this, nuclear data needs will be detected for advanced reactor concepts.
For more information: (https://www.ciemat.es/cargarAplicacionOfertaEmpleo.do?identificador=2243,
or contact Francisco Alvarez – francisco.alvarez@ciemat.es, Daniel Cano – daniel.cano@ciemat.es)
POST DOC Opportunities within IRSN, France (various locations)
IRSN is looking for several Post-Docs in various nuclear fields.
All advertised positions are potentially eligible for a MSCA application (further information on this point is to be discussed with the contact person appointed in each description)
Postdoctoral position : CFD analysis of flow deviation induced by ballooned nuclear fuel rods
Workplace
Cadarache Center – Provence-Alpes-Côte d’Azur – France
Main scientific field
Fluid mechanics
Keywords
CFD, multiphase phase flow, heat transfer
The candidate will work for the Incident and Accident Management Service (SEMIA). The activities conducted in this department covers especially the assessment of design basis accidents in nuclear power plants. This includes LOss of Coolant Accidents (LOCA) that correspond to transients induced by a pipe break in the primary loop of the plant.
Thematics: Civil engineering; Materials; Engineering Sciences
Keywords: Internal Sulfate Reaction (ISR), experimental data interpretation, sustainability indicators, scale effect, international ODOBA project
Place: Cadarache (13), France
Availability date: As soon as possible (May 2023)
Duration: 18 months
The proposed work is part of the research conducted at the Institute for Radiation Protection and Nuclear Safety (IRSN) concerning the ageing of concrete in nuclear power plant containments (extension of the operating life of nuclear reactors) in the framework of the international ODOBA project. This project focuses on internal swelling reactions (ISR) at the scale of massive blocks. They are of two types: the Internal Sulfate Reaction (ISR) and the Alkali-Aggregate Reaction (AAR). These reactions can lead to the degradation of the mechanical properties of the concrete but especially to cracking, potentially resulting in a loss of efficiency of the third containment barrier for radioactive materials.
Location:
IRSN Fontenay-aux-Roses, France
Unit:
Laboratoire de Neutronique (LN) – Service de Neutronique et des risques de Criticité (SNC)
Duration:
1 year
Starting date:
June 2023
The objective of this work is to carry out a comparative study, between VESTA and TRIPOLI 4®, of the nuclear data uncertainty obtained on quantities of interest in depletion calculations after a first comparative study between the two codes on these same quantities of interest k inf and isotopic compositions of criticality safety nuclides.
Domain Decomposition for Next-Generation Monte-Carlo Neutron Transport Code TRIPOLI-5
Start in: As soon as possible
Workplace: Fontenay-aux-roses,
France Duration: 18 months
Monte Carlo burnup calculations are actually memory-bound, and the solution to this limitation lies in some sort of Domain Decomposition in order to distribute the memory requirements of a single simulation over several compute nodes. The problem of domain decomposition does not present the same challenges nor does it use the same approaches for deterministic methods and for Monte-Carlo simulations. A number of domain-decomposition methods adapted to neutron transport criticality calculations have been suggested in the literature, and a few codes, both production and research type, have tested some implementations.
Lieu de travail : Cadarache – Bouche du Rhône – France
Champ scientifique principal : Applied Mathematics, Fluid Mechanics
Key words: Large Eddy Simulation, numerical scheme
Fonction: Education and research
The work proposed in the framework of this post-doctorate is divided into two stages.
Firstly, it consists in extending the space discretization for LES applications on unstructured meshes. This type of development is a difficult problem. In particular, it seems that it is necessary to choose the richest possible approximations of the pressure, while preserving stability (discrete inf-sup condition). Such work has been proposed in the literature for Crouzeix-Raviart finite elements, for the simulation of incompressible flows. The objective is to extend these ideas in two directions:
a) adaptation to compressible flows, within the framework of schemes developed over the last ten years by the Institut de Mathématique de Marseille (I2M) and the IRSN,
b) extension to discretization in space of the same type (i.e. with velocity degrees of freedom associated with faces) but based on cells of different shape: hexahedra (Rannacher-Turek elements), prisms and pyramids.
In a second step, the validation of these schemes will be done on hydrogen, air and water vapour deflagration tests in a flame acceleration tube (ENACCEF2 experiments, performed at the ICARE Laboratory of the CNRS in Orléans). The simulations should make it possible to characterise the turbulence in the flow and the structure of the flame front.
Publication of The Oxford Handbook of Nuclear Security
The first few chapters of The Oxford Handbook of Nuclear Security have now been published online:
https://academic.oup.com/edited-volume/46401?searchresult=1&login=true
WORKSHOP: Increasing Danger of Nuclear Weapons
The workshop is addressed to young physicists who are interested to the topic on nuclear disarmament.
All information is available on the PDF HERE
PhD position at Forschungzentrum Juelich
PhD Position – Investigation of the stability and corrosion behavior of uranium nitrides
Your Job:
Innovative nuclear reactor concepts are currently intensively discussed internationally.
For the operation of most of these concepts novel fuels are envisaged, in particular materials with a matrix of uranium nitride (UN) due to their good thermophysical properties. In addition to their suitability as nuclear fuel, the stability of the materials in contact with aqueous solutions, among other things, is of great interest for the safety assessment of a repository.
At IEK-6, such investigations are being carried out to maintain competence as part of the European collaborative project FREDMANS.
The work is carried out in close cooperation with European partners.
One focus is on the investigation of the oxidation behavior under conditions relevant for interim storage, as well as the conversion of the nitride matrix into an oxide matrix.
• Investigation of the oxidation of UN based materials
• Complete oxidation of the nitride matrix to an oxide matrix
• Influence of certain fission product types (Ln, PGM) on the oxidation of UN
• Influence of atmospheric composition on the oxidation of UN
• Development of thermodynamic and kinetic models to describe the oxidation of UN in collaboration with project partners
• Preparation of data and scientific interpretation of results
• Independent presentation of the results at scientific conferences and in scientific publications
Your Profile:
• Completed university studies (Master) in natural sciences, chemistry, physics, or related discipline
• Experience in the fields of radiochemistry, analytics, and materials science
• Practical experience with laboratory work, as well as willingness and ability to learn and develop these skills are essential
• Experience in handling radioactive materials is desirable
• Ability to work in an international multidisciplinary team
• Willingness to travel nationally and internationally on official business
• Strong motivation to complete the PhD within 3 years
• Very good command of written and spoken English
Last application date: 2023-05-31
A detailed description can be found HERE